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ABSTRACT

Humans struggle to perceive and interpret high-dimensional data.
Therefore, high-dimensional data are often projected into two di-
mensions for visualization. Many applications benefit from complex
nonlinear di ionali ducti i but the effects of
individual high-dimensional features are hard to explain in the two-
dimensional space. Most visualization solutions use multiple two-
dimensional plots, each showing the effect of one high-dimensional
feature in two dimensions; this approach creates a need for a visual
inspection of k plots for a k-dimensional input space. Our solution,
Feature Clock, provides a novel approach that eliminates the need to
inspect these k plots to grasp the influence of original features on the

Figure 1: Feature Clock uses © high X and low Y dimensional data.
regression (LR) between X and yg (Y projected at angle 6). The optimization goal is to find the angle 6/ at which the coefficient ﬁé, of feature
Jjis maximized. © The solution is derived from LR coefficients of @ =0° and 6 =90°. ‘@ We filter the insignific:
ifi i ¢ The largest coefficient of each feature is visualized in the Feature Clock.
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This paper introduces three types of static visualizations, high-
lighting the contributions of the high-dimensional features to linear
directions of the two-dimensional spaces produced by NLDR. The
three techniques arc a Global Featurce Clock indicating the dircction
of features’ contributions in low-dimensional space for the whole
dataset, a Local Clock explaining features’ impact within selected
points, and an Inter-group Clock visualizing contributions between
groups of points. The impl ion is an open-source Python
package. Our technical contributions include: (1) Feature Clock,
a novel technique for plotting feature contributions using linear re-
gression in Sec. 3, (2) a formal proof that ensures a correct behavior
of Feature Clock in Sec. 3 and Suppl. Materials, and (3) an experi-
mental evaluation of the proposed visualization technique in several

data structure d d in two di Feature Clock enh
the explainability and compactness of visualizations of embedded
data and is available in an open-source Python library!.

Index Terms: High-di ional data, i ¢ sionality
reduction, feature importance, visualization.

1 INTRODUCTION

Di ionality reduction methods transform high-di ional data
into 1 1i ional space. These methods aim to preserve vari-
ous properties of the original data in lower dimensions (e.g., variance,
pair-wise distances or similarities, or grouping structure). Use cases
include numerous applications: feature selection [16, 33], visualiza-
tion [15, 31, 22], compression [32, 12], and approximate techniques
to avoid the curse of dimensionality [11, 1]. There are two main
types of dimensionality reduction: linear and nonlinear.

Linear dimensionality reduction (LDR) techniques linearly
project higher dimensional data into a lower dimensional space. All
LDR methods can be seen as a single matrix multiplication, accord-
ing to Y = X x W where X is the original data with samples as rows
and features as columns, Y is the low-dimensional representation,
and W is the transformation matrix. One of the most common visu-
alization techniques to show the effect of high-dimensional features
in LDR space is a biplot [10], which depicts the rows of W.

eo1d

application cases in Sec. 4.

2 BACKGROUND AND RELATED WORK

This section summarizes a few LDR and NLDR methods and com-
mon approaches to visualize their results and highlights limitations.
LDR: Given a dataset with n data points and d features, LDR does
a linear transformation into the low-dimensional space, resulting in
a dataset with n d’-dimensional data points (d’' < d) [6, 9, 27]. A
property of LDR techniques is approximate reversibility [32], via a
matrix multiplication of the embedded matrix, Y, and the transpose
of the transformation matrix W”'. Principal Component Analysis
(PCA) [13] is the most common LDR technique. PCA finds a low-
dimensional representation of X that maximizes variance in Y. PCA
is robust to noise in the data but suffers from outliers, as most LDR
techniques [6]. The effect of each high-dimensional feature in linear
projections can be extracted from a W for any linear technique.
Biplot: Biplot [10] is a visualization technique that can be applied
to all LDR. It involves creating a scatter plot that represents the data
points in a low-dimensional way, called a score plot. Additionally,
vectors are depicted to show the strength of each feature influence
(rows of W), which are referred to as a loading plot. By interpreting
a biplot, a user extracts information about the direction and strength

Nonlinear dimensionality reduction (NLDR), also called
learning, is a set of techniques that aim to project high-dimensional
data onto lower-dimensional manifolds [28, 20, 21]. Constructing
biplots for NLDR is impossible because no linear W exists to explain
the effect of features. Currently, on can visualize the effect of each
feature of interest in a separate plot [31, 15, 19]. These numerous
plots are one of the best methods to understand the original feature’s
effects in low-dimensional spaces, but this solution is not scalable.
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of the association between original and low-dimensional space fea-
tures. The effect of W is uniform across the low-dimensional space,
making biplot an effective tool. Fig. 2a shows a PCA biplot for the
Iris flower dataset [8] where the respective x- and y-axis are the two
principal components. The points are two-dimensional embeddings
of the f¢ di ional data points rep ing realizations of the
iris plants. The arrows point toward change for a given feature. For
instance, sepal width points at ~100°, meaning that increasing sepal
width translates to moving points up at the same angle. A change
in petal length and width affects embedded coordinates in the same
direction. The itude of an arrow indi how signifi a
change of the original feature affects shifts in coordinates.
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Motivation

» Difficult to perceive high-dimensional data

* Use dimensionality reduction and visualize in 2D
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Motivation

» Difficult to perceive high-dimensional data

* Use dimensionality reduction and visualize in 2D

Factors: #SepalLen #SepalWid ¥ PetallLen PetalWid
Labels: @ Setosa ® Versicolor @ Virginica

 Linear dimensionality reduction
* Depicts a transformation matrix W

e Y =X X W with X high-dim. and Y low-dim.

 Easy to analyze

PC1
* Biplot with feature loadings W Biplot for the lris dataset
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Motivation

* Linear projections can’t capture
complex structures
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Motivation

* Linear projections can’t capture
complex structures

Factors: #SepalLen #SepalWid > PetallLen PetalWid
Labels: @ Setosa ® Versicolor @ Virginica

SeplLen SepWid

* Difficult to analyze (not scalable)

t-SNE?2

* There exists no W and no biplot

* Visualize each feature in low-dim. space

t-SNE1

t-SNE projections for the Iris

 Examples: t-SNE, UMAP, and PHATE dataset
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Motivation

Feature Clock shows all feature loadings in one plot without
W for linear and nonlinear dimensionality reductions

Factors: #SepalLen #SepalWid ¥ PetallLen PetalWid
Labels: ® Setosa ® Versicolor @ Virginica

t-SNE2

t-SNE1

Feature Clock for the Iris
dataset
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Method. Step 1

* Apply any dimensionality reduction (e.g., PCA, t-SNE, UMAP, autoencoder)

High dim. data X Low dim. data Y
EERERER 1
11111 — 1
11111 L
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High dim. data X Low dim. data Y

Method. Step 2 L :

» Coefficients [, of the linear regression (LR) between X and y, measure
feature effects in direction ¢

A
» yy= ) projected at angle ¢ X\r “ Yo = Xﬁ@
.4 0

”
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High dim. data X Low dim. data Y

Method. Step 2 - -

» Coefficients [, of the linear regression (LR) between X and y, measure
feature effects in direction ¢

A
» yy= ) projected at angle ¢ \\r % Yo = Xﬁg
.4 0

”

e Optimization problem
. For each feature j, find angle &’ at which coefficient ﬁé IS maximized

6/= argmax |B/]
6<(0..180°)
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Method. Step 3

* Find largest coefficient for each feature )

» Solution from Pythagoras theorem and two linear regression coefficients

. ﬂé biggest coefficient, ﬁg at angle 0, /7 at angle 90

Low dim. data ¥ (B])?= (B)* + (Bl )?
N - '
N 6/ = arctan([3. /Byc ) A
* Fit 2 linear regressions for exact solution v
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Method. Step 4

* Filter insignificant coefficients using t-test and p-values

» t-test checks the probability of coefficient equaling O

+ Do not visualize /) with p-value > 0.05
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Design Choices

* Jo explore low-dimensional space at a finer granularity:
» (Global Feature Clock for all points
e | ocal Clock for each class / selected points

* |Inter-group Clock to see changes between classes / selected points
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Use Cases. Data Analysis

t-SNE2

Factors:

Labels (Death in hospital):

Global clock

t-SNE1

t-SNE?2

—» Disease
—» Avq. TISS score Diabetes
—» APACHE3 score - Dementia
Survival Death
Disease Avg. TISS
&, ||
1.0
0.5 A
=
0.0 A
e
-—0.5
-—1.0
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—» Cost/charges ratio = ADL family - Resuscitate order

—» ADL patient
—» Bilirubin

Local clock

0'4v~Survival
sz“'\ \\
' 4 \ ‘

t-SNE1

Days in study

—» DNR order day

t-SNE2

Inspect what differentiates surviving and dying patients in Support data

Inter-group clock

Survivali=>:Death
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t-SNE1
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Summary

* Scalable, compact, intuitive technique that enhances explainability

 Mathematically proven
* Analysis of any nonlinear space

« Open-source installable PyPi package pip install
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Summary

* Scalable, compact, intuitive technique that enhances explainability

 Mathematically proven
* Analysis of any nonlinear space

 Open-source installable PyPi package pip install feature-clock

e Future work

» Estimate the non-linear trajectory of gradients instead of linear regression

* Dynamic visualization via GPU accelerator
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