Feature Clock: High-Dimensional Effects in Two-Dimensional Plots

Rita Sevastjanova **Olga Ovcharenko**

Valentina Boeva

ETHzürich

Feature Clock: High-Dimensional Effects in Two-Dimensional Plots

ion (LR) between X and \mathbf{y}_{θ} (Y projected at angle θ). The optimization goal is to find the angle θ^{j} at which the coefficient β_{0}^{j} of fear solution is derived from LR coefficients of $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$. (a) We filter the insignificant LR coefficients

to avoid the curse of dimensionality [11, 1]. There are two main

types of dimensionality reduction: linear and nonlinear. Linear dimensionality reduction (LDR) techniques linearly project higher dimensional data into a lower dimensional space. All LDR methods can be seen as a single matrix multiplication, accord ing to $\mathbf{Y} = \mathbf{X} \times \mathbf{W}$ where **X** is the original data with samples as rows and features as columns, **Y** is the low-dimensional representation and **W** is the transformation matrix. One of the most common visu

and W is the transformation matrix. One of the most common visu-alization techniques to show the effect of high-dimensional features in LDR space is a biplot [10], which depicts the rows of W. Nonlinear dimensionality reduction (NLDR), also called manifold learning, is a set of techniques that aim to project high-dimensional data onto lower-dimensional manifolds [28, 20, 21]. Constructing biplots for NLDR is impossible because no linear W exists to explain the effect of features. Currently, on can visualize the effect of each feature of interest in a senarte net [31, 15, 19]. These numerous feature of interest in a separate plot [31, 15, 19]. These numerous plots are one of the best methods to understand the original feature's effects in low-dimensional spaces, but this solution is not scalable

*e-mail: oovcharenko@ethz.ch [†]e-mail: {rita.sevastjanova|valentina.boeva}@inf.ethz.ch ¹https://pypi.org/project/feature-clock

ETH Zürich

arizes a few LDR and NLDR methods and o dimensional representation of X that maximizes variance in Y. PCA is robust to noise in the data but suffers from outliers, as most LDR techniques [6]. The effect of each high-dimensional feature in linear projections can be extracted from a W for any linear technique

projections can be extracted from a W for any linear technique. **Biplot:** Biplot [10] is a visualization technique that can be applied to all LDR. It involves creating a scatter plot that represents the data points in a low-dimensional way, called a score plot. Additionally, vectors are depicted to show the strength of each feature influence (rows of W), which are referred to as a loading plot. By interpreting a biplot, a user extracts information about the direction and strength of the accessitione between original and low dimensioned mane for of the association between original and low-dimensional space features. The effect of ${\bf W}$ is uniform across the low-dimensional space, making biplot an effective tool. Fig. 2a shows a PCA biplot for the Iris flower dataset [8] where the respective x- and y-axis are the two principal components. The points are two-dimensional embeddings of the four-dimensional data points representing realizations of the of the four-dimensional data points representing realizations of the iris plants. The arrows point toward change for a given feature. For instance, sepal width points at ~100°, meaning that increasing sepal width translates to moving points up at the same angle. A change in petal length and width affects embedded coordinates in the same direction. The magnitude of an arrow indicates how significant a change of the original feature affects shifts in coordinates.

- Difficult to perceive high-dimensional data
- Use dimensionality reduction and visualize in 2D

Olga Ovcharenko

1

- Difficult to perceive high-dimensional data
- Use dimensionality reduction and visualize in 2D

- Linear dimensionality reduction
 - Depicts a transformation matrix W
 - $Y = X \times W$ with X high-dim. and Y low-dim.
 - **Easy** to analyze
 - **Biplot** with feature loadings W

• Linear projections can't capture complex structures

• Linear projections can't capture complex structures

- Nonlinear dimensionality reduction
 - **Difficult** to analyze (**not scalable**) lacksquare
 - There exists no W and **no biplot**
 - Visualize each feature in low-dim. space
 - Examples: t-SNE, UMAP, and PHATE

ETH zürich

Feature Clock shows all feature loadings in one plot without W for linear and nonlinear dimensionality reductions

Feature Clock for the Iris dataset

ETH zürich

Method

High dim. data **X**

• Apply any dimensionality reduction (e.g., PCA, t-SNE, UMAP, autoencoder)

Low dim. data **Y**

- **Coefficients** β_{θ} of the linear regression (LR) between X and y_{θ} measure feature effects in **direction** θ
 - $y_{\theta} = Y$ projected at angle θ

Low dim. data **Y**

 $y_{\theta} = X \beta_{\theta}$

- **Coefficients** β_{θ} of the linear regression (LR) between X and y_{θ} measure feature effects in direction θ
 - $y_{\theta} = Y$ projected at angle θ
- **Optimization problem**

Low dim. data **Y**

• For each **feature j**, find angle θ^j at which coefficient β^j_{θ} is maximized θ^{J} = argmax $|\beta^{J}|$ $\theta \in [0..180^\circ)$

- Find largest coefficient for each feature j
 - Solution from Pythagoras theorem and two linear regression coefficients
 - β_{β}^{j} biggest coefficient, β_{0}^{j} at angle 0, β_{00}^{j} at angle 90 $(\beta_{\theta_j}^{j})^2 = (\beta_{0^{\circ}}^{j})^2 + (\beta_{90^{\circ}}^{j})^2$ $\theta^{j} = \arctan(\beta_{000}^{j} / \beta_{000}^{j})$

Fit 2 linear regressions for exact solution

- Filter insignificant coefficients using t-test and p-values
 - t-test checks the probability of coefficient equaling 0
 - Do not visualize β_{ρ}^{J} with p-value ≥ 0.05

Design Choices

Design Choices

- To explore low-dimensional space at a finer granularity:
 - Global Feature Clock for all points
 - Local Clock for each class / selected points
 - Inter-group Clock to see changes between classes / selected points

Use Cases

Use Cases. Data Analysis

Inspect what differentiates surviving and dying patients in Support data

Summary

- Scalable, compact, intuitive technique that enhances explainability
- Mathematically proven
- Analysis of any nonlinear space

• Open-source installable PyPi package pip install feature-clock

ETH zürich

Olga Ovcharenko

11

Summary

- Scalable, compact, intuitive technique that enhances explainability
- Mathematically proven
- Analysis of any nonlinear space

- Future work

 - Dynamic visualization via GPU accelerator

• **Open-source installable PyPi package** pip install feature-clock

• Estimate the non-linear trajectory of gradients instead of linear regression

ETH zürich

Olga Ovcharenko

11

Questions

