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Abstract

Ensuring data quality at scale remains a persis-
tent challenge for large organizations. Despite
recent advances, maintaining accurate and consis-
tent data is still complex, especially when dealing
with multiple data modalities. Traditional error
detection and correction methods tend to focus on
a single modality, typically a table, and often miss
cross-modal errors that are common in domains
like e-Commerce and healthcare, where image,
tabular, and text data co-exist. To address this gap,
we take an initial step towards cross-modal error
detection in tabular data, by benchmarking several
methods. Our evaluation spans four datasets and
five baseline approaches. Among them, Cleanlab,
a label error detection framework, and DataScope,
a data valuation method, perform the best when
paired with a strong AutoML framework, achiev-
ing the highest F1 scores. Our findings indicate
that current methods remain limited, particularly
when applied to heavy-tailed real-world data, mo-
tivating further research in this area.

1. Introduction
Maintaining high-quality data is a challenging task for large
organizations and enterprises (Stonebraker et al., 2018; Oala
et al., 2023; Abedjan et al., 2016; Singh et al., 2025), espe-
cially when a high level of automation is required (Mahdavi
et al., 2019; Siddiqi et al., 2023; Yan et al., 2024). Erroneous
data can lead to devastating economic, societal, and scien-
tific consequences, especially in combination with machine
learning (ML) methods (Sambasivan et al., 2021; McGre-
gor, 2021; Holstein et al., 2019; Northcutt et al., 2021b;
Birhane et al., 2021). Consequently, significant resources
have been invested into automating data error detection and
correction processes, e.g., via data validation systems such
as TensorFlow Data Validation (TFDV) (Polyzotis et al.,
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https://www.amazon.de/LEGO%C2%AE-Ideas-21318-Baumhaus-Konstruktionsspielzeug/dp/B07PX3WW5N/

Figure 1. A real-world cross-modal error from an e-Commerce
catalog where a toy with a choking hazard is advertised to children
of a wrong age group. The tabular product data erroneously states
that the LEGO toy is suitable for four month old babies, even
though the product image indicates that it is meant for teenagers
with 16+ years of age (accessed May 18, 2025).

2019) (deployed at Google) or Amazon Deequ (Schelter
et al., 2018) which is used in several AWS services (Ni-
genda et al., 2022).

Cross-modal error detection. However, existing data vali-
dation systems often focus on a singular modality only (e.g.,
relational data) and do not cover scenarios where errors may
occur across different modalities. Such cross-modal data er-
rors entail inconsistent information across modalities, while
each modality alone appears correct. For instance, cross-
modal errors occur in online platforms for e-Commerce,
traveling, or real estate, as well as self-driving vehicles and
electronic health records, where multi-modal data combines
tabular data, text, images, and videos.

Real-world example. To showcase a cross-modal data error
from the e-Commerce domain, we refer to Figure 1, where a
LEGO toy on Amazon is assigned to children of the wrong
age group. The tabular product data erroneously states that
the LEGO toy is suitable for four-month-old babies, even
though the product image indicates that it is meant for 16+
years old teenagers. This data error is potentially dangerous
since a toy with such small parts can pose a choking hazard
to young children. We point to more cross-modal data errors
from Amazon in Figure 2, and would like to highlight that
it took us only a couple of minutes to manually find such
cases, even though Amazon deploys highly sophisticated
methods to manage product attributes (Lin et al., 2021).
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https://www.amazon.com/Soft-Standard-Vinyl-Toilet-Seat-Cover/dp/B008E48826/ https://www.amazon.com/Substance-Blu-ray-Moore-Region-Australia/dp/B0DPM49CL8/

Seat is pink not white

https://www.amazon.de/KIVI-32H750NW-Smart-Rahmenlos-OLED-Qualit%C3%A4t-32-Wei%C3%9F/dp/B0DFLXXQDD/

Movie is rated 18+

1 2 3

Resolution is too 
low for a 4K TV

Figure 2. Additional real-world examples of cross-modal errors in Amazon’s tabular product metadata, which are obvious from the
corresponding product images: 1 A television is misleadingly labeled as 4K ready when the product image shows that its resolution is
too low for 4K; 2 A pink toilet seat is listed as having color “white”; 3 A movie is marked as not rated, even though its cover clearly
indicates that it is meant for adult audiences only; (product pages accessed on May 10, 2025).

Practical challenges. To expand our understanding of this
area, we interviewed the content quality team of a large
e-Commerce platform. Their product catalog contains tens
of millions of products with thousands of distinct attributes.
The majority of products originate from several thousand
external sellers who provide images and tabular metadata
of varying quality and quantity. Moreover, the data from
external sellers is combined with additional data sourced
from third-party data providers (Yang et al., 2022; Hou et al.,
2024). The company’s quality team designs custom large
language model (LLM)-based solutions for cross-modal
error detection and correction of a few selected attributes.
However, the high customization requirements and train-
ing/inference cost of the attribute-tuned models make their
current solution expensive and difficult to scale to more
specialized attributes and products.

Are existing error detection approaches sufficient? The
detection and repair of errors across diverse data modalities
represent an emerging direction in data-centric AI research,
and general techniques that work across multiple domains
are required. Several existing approaches can be applied
to multi-modal error detection, yet it is an open question
whether they provide sufficient performance since the ma-
jority of them have not been explicitly designed for the
cross-modal setting.

Single-modal tabular error detection approaches (Mahdavi
et al., 2019; Heidari et al., 2019; Krishnan et al., 2016) iden-
tify inconsistencies between columns in a table but have
no direct means to incorporate cross-modality information.
Label error detection methods (Northcutt et al., 2021a;b)
focus primarily on label information in predictive settings
and would be costly to apply in our scenario since training
a specialized model per table attribute is required. LLM-
based approaches to error detection (Hua et al., 2024; Singh
et al., 2025) show promising results for text-image pairs, but
it is unclear how effective they are in handling tabular data
combined with visual information. Additionally, LLM ap-
proaches suffer from high computational costs and typically
require multiple expensive calls to identify erroneous data,
which limits their practical application in large-scale data

cleaning scenarios. We discuss the mentioned approaches
in more detail in Section 2.2.

Overview and contributions. The goal of this paper is
to introduce the problem of cross-modal error detection in
tabular data and to motivate its high practical importance.
Our detailed contributions include:

• We motivate and introduce the problem of cross-modal
error detection in tabular data (Sections 1 & 2).

• We design a preliminary benchmark with four e-
Commerce datasets to evaluate five state-of-the-art er-
ror detection methods. According to our findings, ap-
proaches designed for label error detection, such as Clean-
lab (Northcutt et al., 2021a) and DataScope (Karlaš et al.,
2023) (combined with the AutoML framework Auto-
Gluon (Tang et al., 2024)), perform the best. Crucially, in
the majority of cases, leveraging both tabular and image
data is key to uncovering cross-modal errors. Nonetheless,
current methods remain limited, particularly when applied
to heavy-tailed real-world data. (Section 3).

• The benchmark containing our data and code is available
at: https://github.com/OlgaOvcharenko/find
_errors

2. Problem Statement
In this section, we formalize the problem of cross-modal
error detection in tables and review related work.

2.1. Cross-Modal Error Detection in Tables

Given aligned multi-modal data (D, I), where D is a
relational table and I is a set of corresponding images,
the goal is to identify erroneous entries in the relational
data D. Following Heidari et al. (2019), we denote
A = A1, A2, . . . , AN the attributes of D. We consider
D to be a set of tuples, where each tuple t ∈ D consists
of cells Ct = {t[A1], t[A2], . . . , t[AN ]}. Moreover, t[Ak]
denotes the value of attribute Ak for tuple t, and the corre-
sponding image for t is it. We assume that errors appear
due to inaccurate cell assignments in D. More formally, for
a cell c ∈ Ct we denote by v∗c its unknown true value and by
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vc its observed value. We define an erroneous tuple t ∈ D
as a tuple with at least one cell c ∈ Ct where vc ̸= v∗c .

We define cross-modal error detection as deciding whether
a tuple t ∈ D is erroneous, based on its tabular data Ct and
corresponding image it. Importantly, we assume a setup
where no labeled examples of erroneous records are avail-
able as training data, akin to novelty detection (Pimentel
et al., 2014).

2.2. Related Work

Tabular error detection. Detecting errors in tabular data is
a long-standing research problem in the data management
community (Chu et al., 2013; Abedjan et al., 2016). HoloDe-
tect (Rekatsinas et al., 2017) uses data augmentation and
few-shot learning to detect errors, while HoloClean (Rekatsi-
nas et al., 2017) uses probabilistic inference to find the best
repair. Raha (Mahdavi et al., 2019) and Baran (Mahdavi
& Abedjan, 2020) leverage an ensemble of existing detec-
tors, rules, and constraints for error detection and correction,
respectively. ActiveClean (Krishnan et al., 2016) applies
active learning to iteratively repair the data while preserving
monotone convergence guarantees.

Tabular error detection methods are designed to catch in-
consistencies between columns but do not incorporate cross-
modality information and may therefore struggle to detect
multi-modal errors.

Label error detection. Our problem can also be treated
as label error detection, where one or more modalities are
used to predict errors in a “label column” derived from the
table. For example, given the characteristics of e-Commerce
products (from a table) and respective product images, we
can use the images as input and one of the columns in the
table as a label. A popular approach to label error detection
is Cleanlab (Northcutt et al., 2021a;b). Cleanlab leverages
confident learning to improve existing models and estimate
dataset problems such as erroneous labels, (near) duplicates,
and non-IID data. Second, Jäger & Biessmann (2024) pro-
posed to apply conformal learning, a method to quantify and
calibrate the uncertainty of ML models, for data cleaning.
Third, Data Shapley values (Ghorbani & Zou, 2019; Karlaš
et al., 2023; Wang & Jia, 2023) are a data valuation metric
to quantify the impact of each training point on a model’s
predictions, which has been shown to work well for label
error detection. Fourth, the LEMoN (Zhang et al., 2024)
framework leverages contrastive learning and a CLIP (Rad-
ford et al., 2021) model. LEMoN finds the nearest neighbors
of a sample on the image manifold and compares them to
the neighbors on the textual manifold.

However, label error detection methods are designed for
predictive problems and concentrate on label errors, not
covering, for instance, multi-column errors where several

cells in a tuple contain correlated errors. Moreover, it is
costly to treat individual columns as labels as this often
requires training a specialized model per column.

Error detection with large language models. Recently,
LLMs emerged as a powerful tool that can be prompted
to detect errors in text, images, and structural data. Fine-
Match (Hua et al., 2024) introduces a benchmark focusing
on mismatch detection and correction in text-image pairs.
FineMatch shows the proficiency of visual language models
(VLMs), e.g., LLaVA (Liu et al., 2023) and GPT-4V (Ope-
nAI, 2023), in detecting and fixing errors in multi-modal
inputs. Versatile Data Cleanser (VDC) (Zhu et al., 2024) is
another LLM-powered label error detection framework that
consists of three parts: Question generation, answering, and
evaluation. Given an image and a textual label, VDC cre-
ates LLM-generated label-specific questions that are later
answered by the multi-modal LLM based on the image.
The visual question-answering and original labels are used
to evaluate the correctness of labels. Another LLM-based
solution is DataVinci (Singh et al., 2025), which targets
detecting and correcting sub-string errors.

While prior work has shown the effectiveness of LLMs and
VLMs for text and image cleaning, it is still, to the best
of our knowledge, unclear how VLMs handle tabular data
and inter-row dependencies combined with visual data. Fur-
thermore, VLMs maybe prohibitively expensive in settings
with millions of input samples and hundreds of columns,
especially since existing methods require several calls per
sample to find erroneous data.

3. Preliminary Experimental Results
Next, we conduct a set of preliminary experiments. We
aim to show that multiple modalities indeed help to detect
cross-modal errors and that existing baseline techniques do
not sufficiently address our problem.

3.1. Data and Error Generation

Datasets. We experiment with four datasets to analyze
and demonstrate the difficulty of cross-modal error de-
tection. All datasets contain tabular data and an image
for each row in the table. Fashion (Iuhaniwal, 2024) and
Fashion 44K (Aggarwal, 2019) are two similar Kaggle e-
Commerce datasets with images and tabular data of cloth-
ing products, where Fashion 44K is a larger version. The
other two datasets, Baby and Sports, originate from subcate-
gories of the Kaggle e-Commerce image dataset (Calik &
Büyükpancar, 2024). They originally contain only images,
and, therefore, we leverage a VLM (LLaVA 1.5-7b) (Liu
et al., 2023) to generate corresponding tabular data (see
prompts in Appendix A.1), which we manually post-process
and refine to obtain a ground truth dataset. All datasets con-
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tain an e-Commerce product title, category, type, and color
attributes. There are also dataset-specific columns, e.g.,
sport type for the Sports dataset. Table A1 and Table A2 in
the Appendix highlight the properties of the datasets.

Error injection. Inspired by our interview with practition-
ers, we inject synthetic errors into the test splits of the tabular
data for our datasets to simulate cross-modal errors that are
hard to detect from one modality alone. Note that none of
the training splits contain errors. First, we manually curate
the data to remove pre-existing errors by inspecting the data
and running Cleanlab with the original non-corrupted tabu-
lar data to find and fix inconsistencies. Next, we randomly
select 50% of the rows of each test split. For each sampled
row of the test data, we select a random column to introduce
the error into. To inject an error, we replace the selected cell
with a random existing value from the set of column unique
values different from the cell’s current value. In addition,
we modify all cells in the selected row which contain the
original cell value. For instance, if we change the color
attribute of a product, we also replace the name of the color
in the product title if contained. By that, we ensure that the
error must be detected from the image and that the original
value is not leaked from other cell values. For correlated
columns, we replace the original values only with already
observed pairs, e.g., to avoid creating non-sensical products
with the category “footwear” and subcategory “dress”.

3.2. Baseline Error Detection Performance

The goal of our first experiment is two-fold: we investigate
whether the image modality helps with finding cross-modal
errors in tabular data, and we assess the performance of
several baselines on our benchmark data.

Experimental setup. We evaluate the error detection perfor-
mance of several baseline approaches from Section 2.2 with
different modalities (table only, image only, table + image).
For Fashion and Fashion 44K, we use a random sample of
30% of the tuples as test set, for Baby and Sports, we use
the union of their existing validation and test splits as test
set. As discussed, we only introduce synthetic errors into
the test data. We measure the performance with precision
(P), recall (R), and F1 score (F1).

Methods. We evaluate the following methods in our bench-
mark and refer to Appendix A.2 for details on used prompts.

• Raha – a state-of-the-art single-column error detection
framework for tabular data (Mahdavi et al., 2019). We
use the original benchmarking scripts and provide the
framework with clean and dirty data samples. Raha does
not support images, therefore, we evaluate Raha only with
tabular data.

• AutoGluon + Cleanlab – we combine the state-of-the-

art AutoML library AutoGluon (Tang et al., 2024), with
a state-of-the-art method for label error detection and
correction Cleanlab (Northcutt et al., 2021a;b). We re-
peatedly train AutoGluon models with each column as a
target and use the resulting classifiers as input for Clean-
lab’s error detection. We vary the input modalities for
the AutoGluon models from table-only to image-only and
table combined with image.

• AutoGluon + DataScope – we combine AutoGluon with
the DataScope library (Karlaš et al., 2023) to identify er-
roneous tuples via negative data importance scores. Con-
cretely, we compute Data Shapley values (Ghorbani &
Zou, 2019) for the potentially dirty test data, using the
clean training data for validation. We configure DataS-
cope to calculate exact Data Shapley values for a kNN
proxy model (Jia et al., 2019) with k = 1, repeatedly
train AutoGluon models with each column as a target
and use the resulting feature representations as input for
DataScope. We apply DataScope to the erroneous test set
and score on clean train data. All instances with negative
importance are considered erroreneous.

• LLaVA – we prompt the vision language models LLaVA-
1.5 7b (Liu et al., 2023) and LLaVA-Next-Interleave
7b (Li et al., 2024) to detect cross-modal errors. For the
zero-shot variant, we do not provide any examples, while
we add up to ten concrete dataset- and modality-specific
examples (image and label/table row) to the prompt for
the few-shot variant. We use LLaVA-Next-Interleave for
the few-shot setting since LLaVA-1.5 does not support
multi-image inference.

• LEMoN – to evaluate the potential of contrastive
learning for cross-modal error detection, we leverage
LEMoN (Zhang et al., 2024) that can handle textual labels
only. We create labels from tabular data by serializing
each row into a string. The final label is a combination
of column names and values, e.g., for Fashion data an
example label text is ProductTitle - Nike Men Air Zoom
Shoes, Gender - Men, Category - Footwear.... LEMoN
requires hyperparameters like noise type and noise level;
we use random noise with a level of 0.4, analogous to the
settings in the original paper.

3.3. Results and Discussion

Baseline performance. We show the performance scores
for the baselines in Table 1, together with an indication of
the modalities used for the predictions. First, as expected,
we observe that the cross-modal errors are hard to detect
from the tabular data alone, indicated by the low scores
of Raha, a state-of-the-art error detector for tabular data.
Second, we see sub-par results for the other methods as
well, when they only have access to the tabular data. Third,
the image modality helps with error detection, and the F1
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Table Image Fashion Baby Sports Fashion 44K
Method used? used? P R F1 P R F1 P R F1 P R F1

Raha ✓ ✗ 0.16 0.07 0.09 0.34 0.15 0.20 0.17 0.08 0.10 0.41 0.29 0.34
AutoGluon + Cleanlab ✓ ✗ 0.62 0.41 0.49 0.48 0.48 0.48 0.46 0.57 0.51 0.68 0.29 0.41
AutoGluon + DataScope ✓ ✗ 0.37 0.78 0.50 0.55 0.74 0.63 0.42 0.66 0.52 0.37 0.81 0.51
LLaVA (zero-shot) ✓ ✗ 1.00 0.001 0.003 0.71 0.14 0.23 0.84 0.37 0.52 0.94 0.00 0.01
LLaVA (few-shot) ✓ ✗ 0.71 0.34 0.46 (0.50) (1.00) (0.67) (0.50) (1.00) (0.67) 0.50 0.71 0.59

AutoGluon + Cleanlab ✗ ✓ 0.71 0.94 0.81 0.65 0.66 0.66 0.61 0.70 0.65 0.56 0.92 0.70
AutoGluon + DataScope ✗ ✓ 0.82 0.96 0.89 0.81 0.96 0.88 0.67 0.74 0.70 0.53 0.96 0.68
LLaVA (zero-shot) ✗ ✓ 0.03 0.03 0.03 0.07 0.06 0.06 050 0.005 0.01 0.008 0.00 0.00
LLaVA-I. (few-shot) ✗ ✓ 0.15 0.98 0.27 0.17 0.64 0.27 0.26 0.94 0.41 0.11 0.99 0.21

AutoGluon + Cleanlab ✓ ✓ 0.87 0.78 0.83 0.73 0.67 0.70 0.62 0.70 0.66 0.80 0.71 0.75
AutoGluon + DataScope ✓ ✓ 0.83 0.82 0.83 0.84 0.93 0.89 0.72 0.75 0.73 0.75 0.47 0.58
LLaVA (zero-shot) ✓ ✓ 0.00 0.00 0.00 1.00 0.006 0.01 0.00 0.00 0.00 0.00 0.00 0.00
LLaVA-I. (few-shot) ✓ ✓ (0.50) (1.00) (0.67) 0.51 0.95 0.62 (0.50) (1.00) (0.67) (0.49) (0.99) (0.66)
LEMoN ✓ ✓ 0.72 0.41 0.52 0.66 0.37 0.48 0.51 0.36 0.42 0.50 0.40 0.44

Table 1. Error detection performance of the baseline approaches with varying modalities on three e-commerce different methods. Best
result per dataset are highlighted in bold, the second-best underlined. We report some of the metrics for LLaVA-Interleave (LLaVA-I.)
(few-shot) in brackets, where it only outputs a single class prediction (marking everything as erroneous). The best-performing methods
are AutoGluon + DataScope and AutoGluon + Cleanlab with access to both image and tabular data. Runtimes are included in Table A11.

scores of AutoGluon + Cleanlab and AutoGluon + DataS-
cope in the image-only setup are significantly higher than
in the table-only setup. Furthermore, in three out of four
datasets, joint access to both modalities results in the best
performance, with an improvement of up to 5% in F1 score
compared to the image-only setup. However, for Fashion,
the performance of AutoGluon + DataScope degrades when
images are combined with tabular data.

The results confirm our hypothesis that the chosen prob-
lem is difficult, even for VLMs. LLaVA in both modes,
zero- and few-shot, produces low or unreliable F1 scores
and, in several cases, even marks every input tuple as er-
roneous (shown in brackets). This is surprising since we
use LLaVA for the tabular data generation of the Baby and
Sports datasets.

Even though AutoGluon + DataScope scores the highest in
our benchmark, it only reaches high F1 for the two small
datasets and provides subpar performance on the larger Fash-
ion44K dataset, missing up to half of the errors in some
cases (as indicated by the recall scores). The inconsistent
performance across modalities and datasets raises the ques-
tion of when tabular data combined with images becomes
helpful for DataScope, given that the multi-modal approach
has proven effective for other methods. Furthermore, due to
the use of a kNN proxy model, DataScope’s performance re-
lies heavily on AutoGluon’s input embedding quality, with
F1 scores decreasing by 10% when using insufficiently
trained representations (not shown in the table). Further-
more, DataScope requires a large clean validation set. While
our benchmark uses clean training data for scoring, this re-

Erroneous Tuple Image

Category Clothing
ProductType Pants

Color Blue pink
Material Plastic

Category Volleyball
ProductType Volleyball nets

Color Black
Sport type Camping

Table 2. Examples of two multi-modal errors that are only detected
by jointly looking at image and tabular data.

quirement is problematic in real-world applications where
such clean datasets may not be available. AutoGluon +
Cleanlab scores the second highest in our benchmark but
only reaches F1 scores of around 70%-80% percent, miss-
ing 22% to 33% percent of errors (according to the recall
scores). Interestingly, we see a consistent positive impact
of having joint access to both modalities (table + image) for
this baseline, with improvements of up to 5% in F1 scores.

We interpret our results as confirmation that further research
is needed for cross-modal error detection where one of the
modalities is a table.

Example. To give a concrete example of cross-modal errors
that are found only by jointly looking at the image and
table, we point to Table 2, which describes two examples
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Dataset Column Method F1 F1 F1 Cardi- Frequency DistributionTable Image Table + Image nality

E
as

y

Fashion Category Cleanlab 0.48 0.94 1.00 2DataScope 0.43 1.00 1.00

Fashion SubCategory Cleanlab 0.61 0.94 0.94 9DataScope 0.47 0.87 0.91

Baby PackageMaterial Cleanlab 0.70 0.89 0.90 9DataScope 0.70 0.94 0.95

H
ar

d

Fashion Color Cleanlab 0.58 0.66 0.69 38DataScope 0.51 0.77 0.71

Sports SportType Cleanlab 0.59 0.59 0.62 65DataScope 0.47 0.70 0.68

Baby ProductType Cleanlab 0.43 0.42 0.51 132DataScope 0.70 0.88 0.88

Table 3. Selection of easy and hard columns for cross-modal error detection using AutoGluon + Cleanlab and AutoGluon + DataScope.
Hard columns have higher number of distinct values and a more skewed frequency distribution.

from the Baby and Sports datasets. The baby wipes have
the wrong product type and category, and are described
as baby pants in the table. The camping chair is wrongly
marked as a volleyball net. In both cases, the table-only
or image-only methods fail to detect these inconsistencies.
Both errors are nontrivial. While the “wipes” error happens
even during data generation, where LLaVA confuses baby
wipes/onesies/diapers, the “chair” error is detected only
when given both image and table which we attribute to the
fact that the sport type contradicts the category and helps to
detect the inconsistency.

Column-wise performance. To deeper understand the re-
sults of the best-performing methods AutoGluon + DataS-
cope and AutoGluon + Cleanlab, we analyze their perfor-
mance for errors in different columns. Table 3 shows three
easy (high F1 score) and the three hard (low F1 score)
cases. Overall, the analysis indicates that it is more difficult
to detect errors in high-cardinality columns (many distinct
values) with a skewed frequency distribution (many rare
values), e.g., the product type column in Baby is hard to
detect because of a long-tailed distribution with only a few
common values. Importantly, real-world data often exhibit
skewed/long-tailed distributions (Yi et al., 2025). On the
other hand, Table 3 indicates that errors are the easiest to
detect in columns with few distinct values and balanced
frequencies. An key observation, confirmed by the column-
wise evaluation, is that joint access to image and table data
improves the F1 scores. However, DataScope struggles to
leverage tabular data with images in challenging cases. The
optimal approach for combining modalities remains unclear
for DataScope, while other methods successfully benefit
from multi-modal error detection.

3.4. Automated Repair

While this paper focuses on error detection, an important
next step is the automated repair of the detected errors. For
that, we evaluate AutoGluon + Cleanlab’s ability to correct
the errors by leveraging the correct “label” as suggested via
confident learning. Table 4 shows the error detection and
correction accuracy for the selected columns in all three
datasets, denoting the fraction of injected errors that could
be successfully detected and repaired. Full results are in Ap-
pendix, Table A7, Table A8, Table A9, and Table A10. Sim-
ilar to detection, we observe that error correction benefits
from joint access to tabular and image data and that repairs
are more difficult for heavy-tailed data (e.g., in color and
product type columns from the Baby and Sports datasets).
There is room for improvement in error detection and repair.

Dataset Column Table Image Table+
Image

E
as

y Fashion Sub 0.01 0.25 0.83
Baby PackageMat. 0.79 0.18 0.81
Fashion SubCategory 0.07 0.66 0.94

H
ar

d Baby ProductType 0.17 0.20 0.24
Baby Color 0.21 0.16 0.21
Sports ProductType 0.05 0.30 0.35

Table 4. A selection of easy and hard columns for error detection
and repair using AutoGluon + Cleanlab. The table contains the
error correction accuracy per column.
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4. Conclusions
Our preliminary findings highlight a gap in existing method-
ologies: the absence of an effective approach that can di-
rectly handle multi-modal inputs for both error detection
and correction. We found tabular error detection methods
and VLMs to have subpar performance. While label error
detection methods showed potential, they still incur a perfor-
mance gap, and it is unclear how to select the best approach
among them. Furthermore, label error detection methods
are expensive, as one has to train a separate AutoML model
for each column in every dataset.

To advance cross-modal error detection for tables, we plan to
design a dedicated multi-modal model (potentially based on
self-supervised contrastive learning (Radford et al., 2021))
and to develop a larger and more comprehensive bench-
mark that includes real-world data from domains beyond
e-Commerce. Additionally, a broader range of baseline
models should be considered in the evaluation, e.g., tabular
foundation models like TabPFN (Hollmann et al., 2025) and
CARTE (Kim et al., 2024), as well as novelty and anomaly
detection methods.
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advance data preparation and validation. As enterprises in-
creasingly leverage multi-modal datasets—combining struc-
tured tables with accompanying text and images—ensuring
consistency across modalities becomes vital. However, ex-
isting methods focus mainly on single-modality or label er-
rors, often missing cross-modal inconsistencies common in
domains like e-Commerce and healthcare. Such inconsisten-
cies can lead to serious real-world consequences, including
safety risks for consumers, for example, a product image
showing a adults-only product mislabeled as child-safe, or
a violent movie tagged as family-friendly. Moreover, unde-
tected errors can result in violations of legal and regulatory
standards, such as incorrect specification of allergens, age
restrictions, or chemical contents. Our aim is to lay the
groundwork for modality-aware data validation pipelines
that not only enhance technical robustness but also promote
consumer protection and regulatory compliance.
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A. Appendix
A.1. Tabular Data Generation

The prompt used to generate the tabular data for Baby is:

Given this image of baby product, fill these attributes of a table: {",".join(
category_fields)}. Use only basic colors. The Age Limit should be a number. Title should
be a combination of {",".join(category_fields_in_title))}. Return the result as a JSON
with the attributes.

The prompt used to generate the tabular data for Sports is:

Given this image of products for sport/outdoor activities, fill these attributes of a
table: {",".join(category_fields)}. Use only basic colors. Title should be a combination
of {",".join(category_fields_in_title))}. Return the result as a JSON with the attributes.

A.2. LLM Prompting for Error Detection

To evaluate LLaVA 1.5-7b (Liu et al., 2023) with a single table, we prompt LLM with each row from the table:

Given a set of e-Commerce product properties, answer if there are errors in the product
properties.
Properties: {col_name-row_value-pairs}.
Please only answer with ’yes’ if there are errors, or ’no’ if there are no errors.

The prompts used to assess performance of the LLM with images and a single value from the label column:

Given am e-Commerce product image and property, answer if the property is erroneous,
especially comparing to the image.
Property: {col_name-row_name}.
Please only answer with ’yes’ if there are errors, or ’no’ if there are no errors.

The prompts used to assess performance of the LLM with images and tabular data:

Given an e-Commerce product image and set of product properties, answer if there are
inconsistencies between product properties and the image.
Properties: {col_name-row_name-pairs}.
Please only answer with ’yes’ if there are errors, or ’no’ if there are no errors.

For LLaVA-Next Interleave 7b (Li et al., 2024), we add additional examples with images and expected result to the prompts
above. For example, for images with a single attribute as a target, we use:

<|im_start|>user \nGiven an e-Commerce product image and property, answer if the product
property contains errors, especially comparing to the image. Here are some examples:

Example 1: Image: <image>. Properties: Category - care. Assessment: yes. Category is wrong
. Category should be diapers.
Example 2: Image: <image>. Properties: Product type - wipes. Assessment: yes. Product type
is wrong. Product type should be diapers.

Example 3: Image: <image>. Properties: Color - multi-colored. Assessment: no.
...

Please evaluate a product with image <image> and the following property: {col_name-
row_name}. Please only answer with ’yes’ if there are errors, or ’no’ if there are no
errors.|im_end|><|im_start|>assistant
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A.3. Supplementary Tables

Name #Rows #Cols Image size

Fashion 2,907 6 1080×1440
Baby 1,299 8 224×224
Sports 1,368 7 224×224
Fashion 44K 44,442 9 1080×1440

Table A1. Basic statistics of the multi-modal e-Commerce datasets.

Dataset Column #Distinct Distinct Frequency Distribution

Fashion

Gender 4

Category 2

SubCategory 9

ProductType 30

Color 38

Baby

Category 20

ProductType 132

Color 107

PackageMaterial 9

Sports

Category 55

ProductType 344

Color 77

SportType 65

Fashion 44K

Gender 5

Category 7

SubCategory 45

ProductType 144

Color 47

Season 5

Table A2. Statistics of all columns and datasets, including value counts histogram of each column, sorted descending by counts.
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Table Image Measure Gender Category SubCategory ProductType Color

✓ ✗
P 1.00 1.00 0.69 0.54 0.61
R 0.01 0.32 0.55 0.60 0.55
F1 0.02 0.48 0.61 0.57 0.58

✗ ✓
P 0.79 1.00 0.91 0.66 0.52
R 0.95 0.88 0.98 0.93 0.93
F1 0.86 0.94 0.94 0.77 0.66

✓ ✓
P 0.95 1.00 0.94 0.78 0.75
R 0.57 1.00 0.94 0.88 0.64
F1 0.71 1.00 0.94 0.83 0.69

Table A3. AutoGluon + Cleanlab performance per column in Fashion.

Table Image Measure Category ProductType Color PackageMaterial

✓ ✗
P 0.70 0.54 0.26 0.61
R 0.34 0.36 0.39 0.81
F1 0.46 0.43 0.32 0.70

✗ ✓
P 0.70 0.44 0.55 0.87
R 0.88 0.41 0.45 0.92
F1 0.78 0.42 0.50 0.89

✓ ✓
P 0.80 0.61 0.57 0.86
R 0.88 0.44 0.45 0.94
F1 0.83 0.51 0.50 0.90

Table A4. AutoGluon + Cleanlab performance per column in Baby.

Table Image Measure Category ProductType Color SportType

✓ ✗
P 0.59 0.51 0.39 0.49
R 0.33 0.56 0.61 0.75
F1 0.43 0.53 0.47 0.59

✗ ✓
P 0.77 0.61 0.60 0.50
R 0.77 0.60 0.73 0.71
F1 0.77 0.61 0.66 0.59

✓ ✓
P 0.74 0.62 0.60 0.55
R 0.74 0.60 0.64 0.71
F1 0.74 0.61 0.62 0.62

Table A5. AutoGluon + Cleanlab performance per column in Sports.

Table Image Measure Gender Category SubCategory ProductType Color Season

✓ ✗
P 0.90 1.00 0.86 0.74 0.47 0.70
R 0.08 0.04 0.12 0.28 0.21 0.94
F1 0.15 0.09 0.20 0.41 0.29 0.80

✗ ✓
P 0.74 0.96 0.78 0.55 0.35 0.44
R 0.92 0.99 0.97 0.93 0.95 0.77
F1 0.82 0.97 0.87 0.70 0.51 0.57

✓ ✓
P 0.74 0.96 0.96 0.89 0.50 0.75
R 0.71 0.96 0.72 0.71 0.29 0.94
F1 0.73 0.96 0.82 0.79 0.37 0.84

Table A6. AutoGluon + Cleanlab performance per column in Fashion 44K.
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Measure Gender Category SubCategory ProductType Color

Table 0.01 0.44 0.07 0.45 0.06
Image 0.25 0.97 0.66 0.65 0.10

Table & Image 0.83 0.88 0.94 0.80 0.72

Table A7. Error detection and repair accuracy for Fashion columns (table + image) using Cleanlab.

Measure Category ProductType Color PackageMaterial

Table 0.18 0.17 0.21 0.79
Image 0.79 0.20 0.16 0.18

Table & Image 0.54 0.24 0.21 0.81

Table A8. Error detection and correction accuracy for Baby (table + image) using Cleanlab.

Measure Category ProductType Color SportType

Table 0.15 0.05 0.33 0.42
Image 0.64 0.30 0.47 0.40

Table & Image 0.46 0.35 0.31 0.51

Table A9. Error detection and correction accuracy for Sports (table + image) using Cleanlab.

Measure Gender Category SubCategory ProductType Color Season

Table 0.10 0.04 0.07 0.20 0.02 0.67
Image 0.88 0.98 0.94 0.84 0.69 0.64

Table & Image 0.13 0.73 0.54 0.58 0.04 0.86

Table A10. Error detection and repair accuracy for Fashion 44K columns (table + image) using Cleanlab.

Table Image Fashion Fashion 44K
Method used? used? Time (S) Time (S)

Raha ✓ ✗ 12 85
AutoGluon + DataScope ✓ ✗ 655 + 7 1,782 + 4,157
AutoGluon + Cleanlab ✓ ✗ 722 + 17 1,913 + 149
LLaVA (zero-shot) ✓ ✗ 69 3,276
LLaVA (few-shot) ✓ ✗ 130 3,724

AutoGluon + DataScope ✗ ✓ 3,036 + 321 5,009 + 6,584
AutoGluon + Cleanlab ✗ ✓ 2,749 + 353 5,664 + 6,924
LLaVA (zero-shot) ✗ ✓ 1,251 19,725
LLaVA-I. (few-shot) ✗ ✓ 10,647 69,071

AutoGluon + DataScope ✓ ✓ 3,346 + 327 17,289 + 5,866
AutoGluon + Cleanlab ✓ ✓ 9,354 + 59 19,289 + 454
LLaVA (zero-shot) ✓ ✓ 193 4,366
LLaVA-I. (few-shot) ✓ ✓ 497 8,946
LEMoN ✓ ✓ 489 5,057

Table A11. Time elapsed for training each method Fashion and Fashion 44K datasets that have similar structure and contain 2,907 and
44,442 items respectively. All experiments are conducted on the same machine, using two Xeon Gold 6326 CPUs at 2.9GHz, 1 TB DDR4
memory, and an A100 80GB GPU.
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