ETH ziirich Getao . BBBOEVA
science—— % LAB

Benchmarking Self-Supervised Learning for
Single-Cell Data

Philip Toma'*, Olga Ovcharenko®T, Imant Daunhawer’,
Julia Vogt', Florian Barkmann'#, Valentina Boeva'-234+
1: Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zlrich, Switzerland; 2: ETH AL Center, ETH Zurich, Zlrich, Switzerland;

3: Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland; 4: Cochin Institute, INSERM U1016, CNRS UMR 8104, Paris Descartes University, Paris, France;
t#: equal contribution

Self-supervised learning (SSL) has emerged as a Evaluation on three downstream tasks.
powerful approach for learning biologically meaningful
representations of single-cell data. To establish best
practices in this domain, we present a comprehensive
benchmark evaluating eight SSL methods across three
downstream tasks and eight datasets, with various data
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augmentation strategies. Our results demonstrate that g‘,"’ oo
SimCLR and VICReg consistently outperform other ™ ars

methods across different tasks. Furthermore, we identify
random masking as the most effective augmentation
technique. This benchmark provides valuable insights into

the application of SSL to single-cell data analysis, & vissing @D N
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bridging the gap between SSL and single-cell biology. Input SSL Method Embedding Evaluation
SimCLR and VICReg are the best-performing  SimCLR and VICReg are the best methods for batch integration.
methods across all downstream tasks. PBMC Lung Pancreas
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Masking is the best-performing augmentation. In conclusion, SImCLR and VICReg emerge as
HIC MCA PBMC the top performing methods. Masking
Gaussian o g7 Gaussian 13 Gaussian 065 augmentation proves to be the most

impactful augmentation. We provide a
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